

### **Ensemble Modeling with Contrastive Knowledge Distillation for Sequential Recommendation**

Hanwen Du hwdu@stu.suda.edu.cn Soochow University Suzhou, Jiangsu, China

Fuzhen Zhuang zhuangfuzhen@buaa.edu.cn Beihang University Beijing, China Huanhuan Yuan hhyuan@stu.suda.edu.cn Soochow University Suzhou, Jiangsu, China

Guanfeng Liu guanfeng.liu@mq.edu.au Macquarie University Sydney, Australia

Yanchi Liu yanchi.liu@rutgers.edu Rutgers University New Brunswick, New Jersey, USA Victor S. Sheng victor.sheng@ttu.edu Texas Tech University Lubbock, Texas, USA

#### code: https://github.com/hw-du/EMKD.

**SIGIR 2023** 

Pengpeng Zhao<sup>\*</sup> ppzhao@suda.edu.cn Soochow University Suzhou, Jiangsu, China

Lei Zhao zhaol@suda.edu.cn Soochow University Suzhou, Jiangsu, China

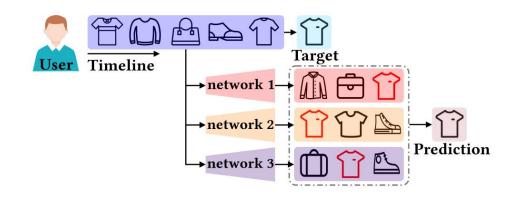




**Reported by Minqin Li** 



# Introduction



We propose a novel framework called Ensemble Modeling with Contrastive Knowledge Distillation for sequential recommendation (EMKD). To the best of our knowledge, this is the first work to apply the ensemble modeling to sequential recommendation.

Figure 1: An illustration of ensemble modeling for sequential recommendation. Three parallel networks make different predictions based on users' historical interactions. Although each individual network is unable to make an accurate prediction, combining the predictions of these networks together will get the correct result.

We propose a novel contrastive knowledge distillation approach that facilitates knowledge transfer and distills knowledge from both the representation level and the logits level



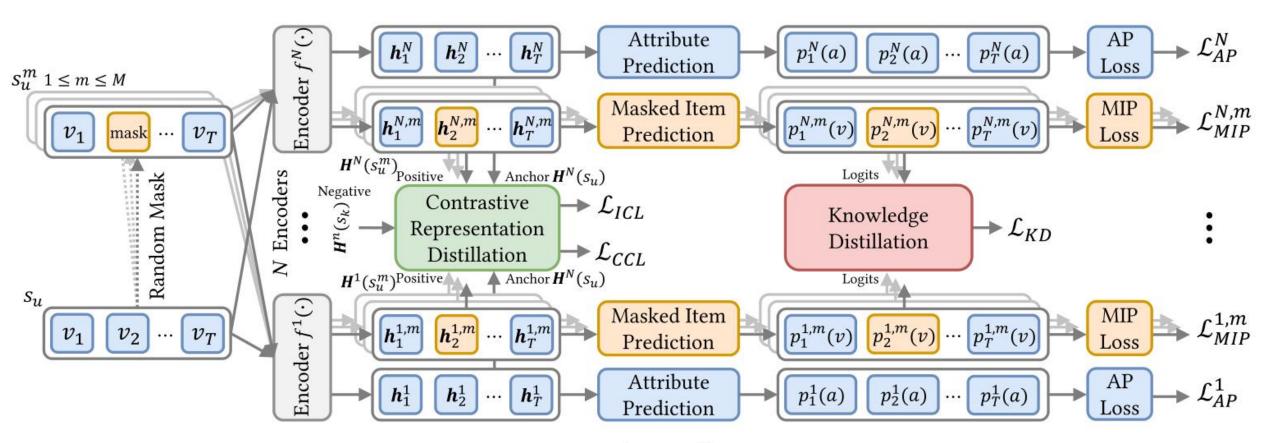


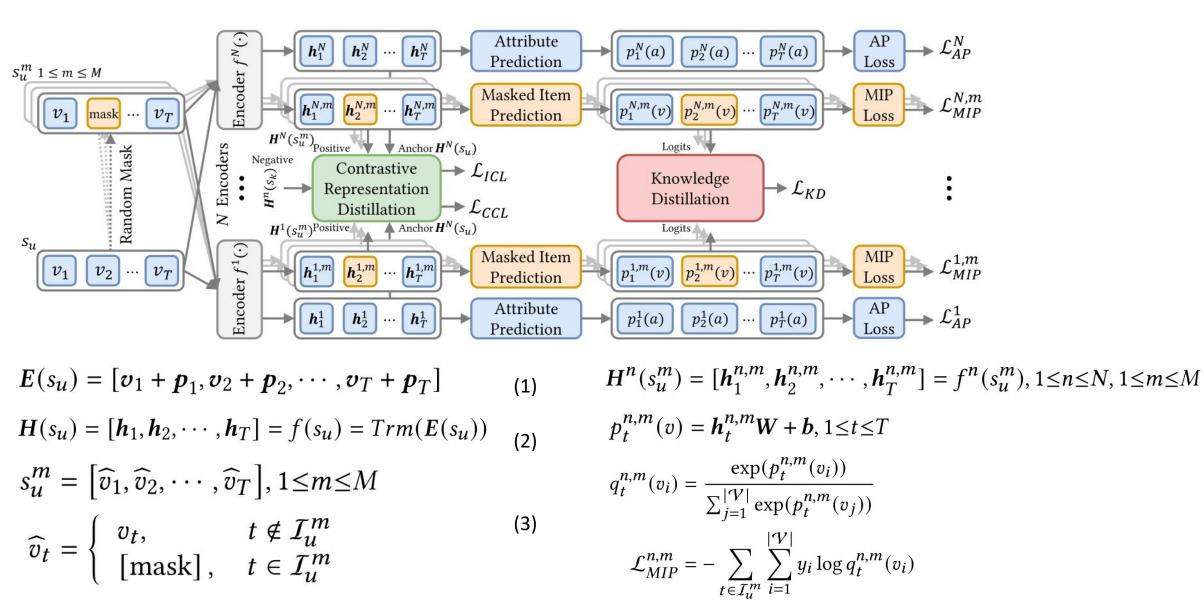
Figure 2: An overview of EMKD with N parallel networks  $f^1(\cdot), \dots, f^N(\cdot)$ . For each original sequence  $s_u$ , we generate M different masked sequences. The hidden representations of the original sequence  $H^1(s_u), \dots, H^N(s_u)$  serve as the anchor for contrastive representation distillation and are used for the attribute prediction task, while the hidden representations of the masked sequences  $H^1(s_u^m), \dots, H^N(s_u^m)$  serve as positive samples for contrastive representation distillation and are used for the masked item prediction task. Negative samples  $H^n(s_k)(1 \le n \le N)$  for contrastive representation distillation are collected from the same batch. We compute the Kullback-Leibler divergence on the logits of the masked item prediction task between different networks for knowledge distillation.



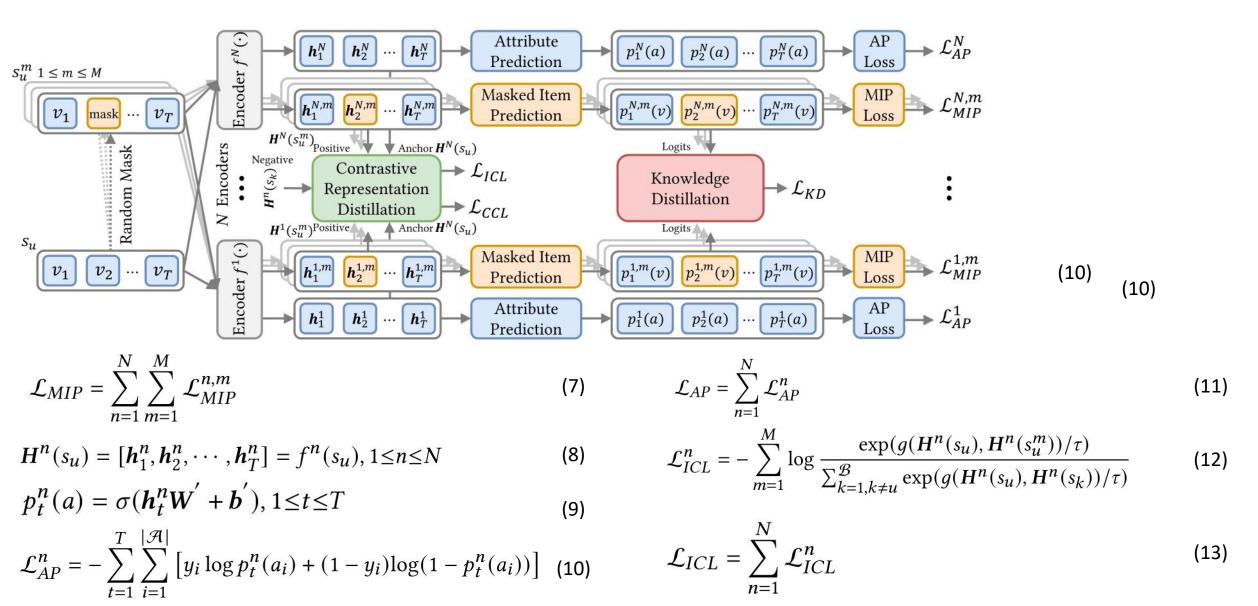
(4)

(5)

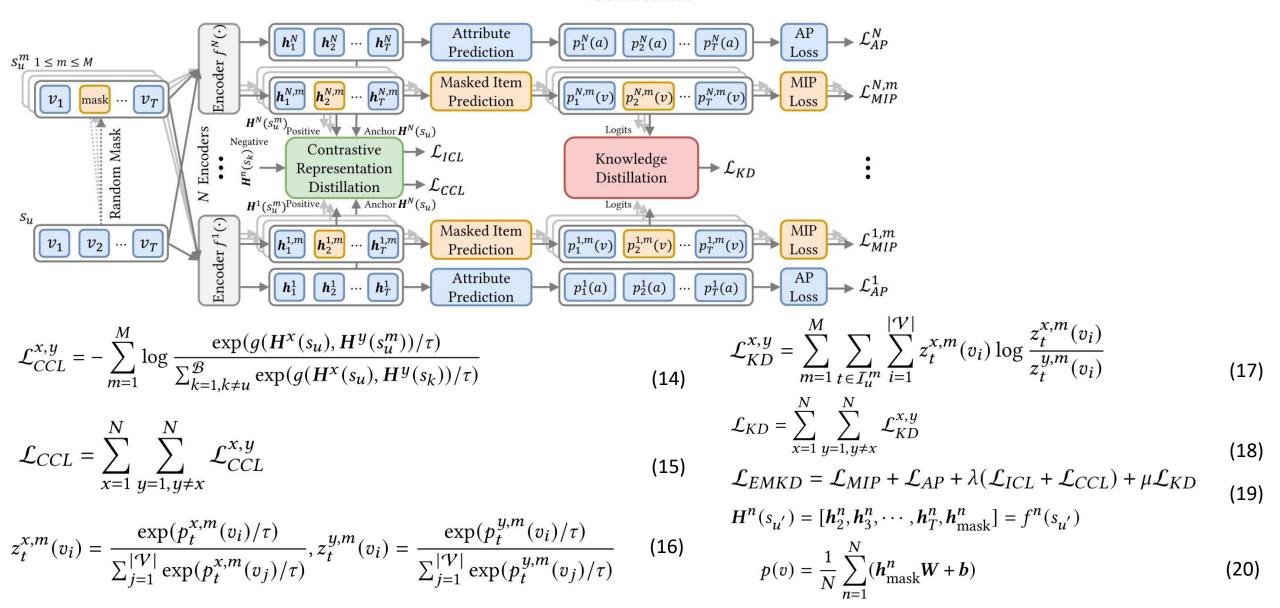
(6)













## Experiments

Table 1: Performance comparison (NDCG@10) between the original model and the ensemble models. We independently train two parallel networks initialized with different random seeds and compare the result with the original model.

| Model                   | G                          | RU4Rec                     |                            | Caser                      | SASRec                     |                            |  |
|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|
|                         | Original                   | Ensemble( $2\times$ )      | Original                   | Ensemble( $2\times$ )      | Original                   | Ensemble( $2\times$ )      |  |
| Beauty<br>Toys<br>ML-1M | 0.0175<br>0.0097<br>0.0649 | 0.0199<br>0.0102<br>0.0720 | 0.0212<br>0.0168<br>0.0734 | 0.0247<br>0.0193<br>0.0786 | 0.0284<br>0.0320<br>0.0918 | 0.0365<br>0.0378<br>0.1032 |  |





#### Table 2: Dataset statistics after preprocessing.

| Datasets             | Beauty  | Toys    | ML-1M     |
|----------------------|---------|---------|-----------|
| #users               | 22,363  | 19,412  | 6,040     |
| #items               | 12,101  | 11,924  | 3,953     |
| #actions             | 198,502 | 167,597 | 1,000,209 |
| avg. actions/user    | 8.9     | 8.6     | 163.5     |
| avg. actions/item    | 16.4    | 14.1    | 253.0     |
| sparsity             | 99.93%  | 99.93%  | 95.81%    |
| #attributes          | 1,221   | 1,027   | 18        |
| avg. attributes/item | 5.1     | 4.3     | 1.7       |





Table 3: Overall performance of different methods for sequential recommendation. The best score and the second-best score in each row are bolded and underlined, respectively. The last column indicates improvements over the best baseline method.

| Dataset | Metric  | GRU4Rec | Caser  | SASRec | BERT4Rec | FDSA   | S <sup>3</sup> -Rec | MMInfoRec | CL4SRec | DuoRec        | EMKD   | Improv. |
|---------|---------|---------|--------|--------|----------|--------|---------------------|-----------|---------|---------------|--------|---------|
| Beauty  | HR@5    | 0.0206  | 0.0254 | 0.0371 | 0.0364   | 0.0317 | 0.0382              | 0.0527    | 0.0396  | 0.0559        | 0.0702 | 25.58%  |
|         | HR@10   | 0.0332  | 0.0436 | 0.0592 | 0.0583   | 0.0496 | 0.0634              | 0.0739    | 0.0630  | 0.0867        | 0.0995 | 14.76%  |
|         | NDCG@5  | 0.0139  | 0.0154 | 0.0233 | 0.0228   | 0.0184 | 0.0244              | 0.0378    | 0.0232  | 0.0331        | 0.0500 | 32.28%  |
|         | NDCG@10 | 0.0175  | 0.0212 | 0.0284 | 0.0307   | 0.0268 | 0.0335              | 0.0445    | 0.0307  | 0.0430        | 0.0594 | 33.48%  |
| Toys    | HR@5    | 0.0121  | 0.0205 | 0.0429 | 0.0371   | 0.0269 | 0.0440              | 0.0579    | 0.0503  | 0.0539        | 0.0745 | 28.67%  |
|         | HR@10   | 0.0184  | 0.0333 | 0.0652 | 0.0524   | 0.0483 | 0.0705              | 0.0818    | 0.0736  | 0.0744        | 0.1016 | 24.21%  |
|         | NDCG@5  | 0.0077  | 0.0125 | 0.0248 | 0.0259   | 0.0227 | 0.0286              | 0.0408    | 0.0264  | 0.0340        | 0.0534 | 30.88%  |
|         | NDCG@10 | 0.0097  | 0.0168 | 0.0320 | 0.0309   | 0.0281 | 0.0369              | 0.0484    | 0.0339  | 0.0406        | 0.0622 | 28.51%  |
| ML-1M   | HR@5    | 0.0806  | 0.0912 | 0.1078 | 0.1308   | 0.0953 | 0.1128              | 0.1454    | 0.1142  | 0.1930        | 0.2315 | 19.95%  |
|         | HR@10   | 0.1344  | 0.1442 | 0.1810 | 0.2219   | 0.1645 | 0.1969              | 0.2248    | 0.1815  | 0.2865        | 0.3239 | 13.05%  |
|         | NDCG@5  | 0.0475  | 0.0565 | 0.0681 | 0.0804   | 0.0597 | 0.0668              | 0.0856    | 0.0705  | 0.1327        | 0.1616 | 21.78%  |
|         | NDCG@10 | 0.0649  | 0.0734 | 0.0918 | 0.1097   | 0.0864 | 0.0950              | 0.1203    | 0.0920  | <u>0.1586</u> | 0.1915 | 20.74%  |



Table 4: Ablation study (NDCG@10) on three datasets. Bold score indicates the performance under the default setting. ↑ indicates the performance better than the default setting.

Chongqing University

of Technology

Table 5: Performance comparison (NDCG@10) of models with different parameter sizes on three datasets. \* indicates the default setting for each model.

| Architecture             | Beauty | Dataset<br>Toys | ML-1M   |  |
|--------------------------|--------|-----------------|---------|--|
| (1) EMKD(×3)             | 0.0594 | 0.0622          | 0.1915  |  |
| (2) Remove ICL           | 0.0529 | 0.0545          | 0.1679  |  |
| (3) Remove CCL           | 0.0552 | 0.0560          | 0.1807  |  |
| (4) Remove KD            | 0.0537 | 0.0571          | 0.1758  |  |
| (5) Independent Training | 0.0452 | 0.0484          | 0.1476  |  |
| (6) Single Encoder       | 0.0363 | 0.0375          | 0.1183  |  |
| (7) EMKD(×2)             | 0.0536 | 0.0568          | 0.1792  |  |
| (8) EMKD(×4)             | 0.0591 | 0.0629↑         | 0.1930↑ |  |
| (9) Remove AP            | 0.0578 | 0.0609          | 0.1831  |  |

|                    | В       | eauty   | -       | Гoys    | ML-1M   |         |  |
|--------------------|---------|---------|---------|---------|---------|---------|--|
| Architecture       | Params. | NDCG@10 | Params. | NDCG@10 | Params. | NDCG@10 |  |
| SASRec-2 Layers*   | 4.69M   | 0.0284  | 4.65M   | 0.0320  | 2.51M   | 0.0918  |  |
| SASRec-4 Layers    | 6.27M   | 0.0301  | 6.23M   | 0.0313  | 4.09M   | 0.0896  |  |
| SASRec-6 Layers    | 7.85M   | 0.0298  | 7.80M   | 0.0332  | 5.67M   | 0.0857  |  |
| SASRec-8 Layers    | 9.43M   | 0.0279  | 9.38M   | 0.0305  | 7.24M   | 0.0932  |  |
| SASRec-10 Layers   | 11.01M  | 0.0282  | 10.96M  | 0.0310  | 8.82M   | 0.0881  |  |
| BERT4Rec-2 Layers* | 7.80M   | 0.0307  | 7.71M   | 0.0309  | 3.53M   | 0.1097  |  |
| BERT4Rec-4 Layers  | 9.38M   | 0.0328  | 9.29M   | 0.0312  | 5.11M   | 0.1113  |  |
| BERT4Rec-6 Layers  | 10.96M  | 0.0332  | 10.87M  | 0.0306  | 6.69M   | 0.1100  |  |
| BERT4Rec-8 Layers  | 12.54M  | 0.0310  | 12.45M  | 0.0298  | 8.27M   | 0.1093  |  |
| BERT4Rec-10 Layers | 14.12M  | 0.0319  | 14.03M  | 0.0293  | 9.85M   | 0.1099  |  |
| EMKD(×2)           | 9.36M   | 0.0536  | 9.28M   | 0.0568  | 5.08M   | 0.1792  |  |
| EMKD(×3)*          | 14.05M  | 0.0594  | 13.91M  | 0.0622  | 7.62M   | 0.1915  |  |



### Experiments

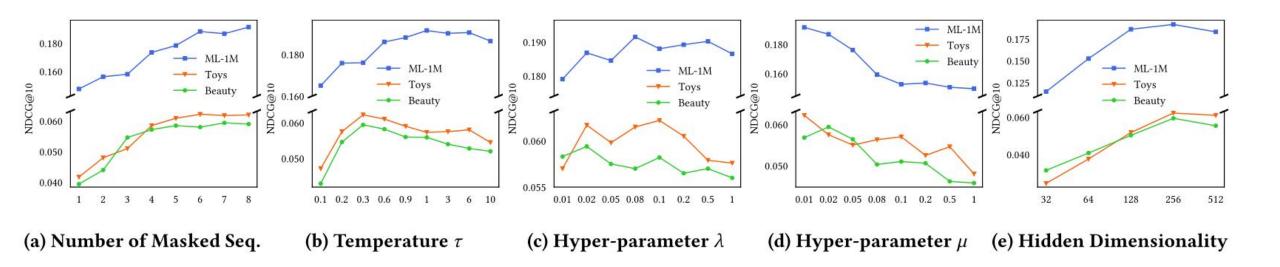
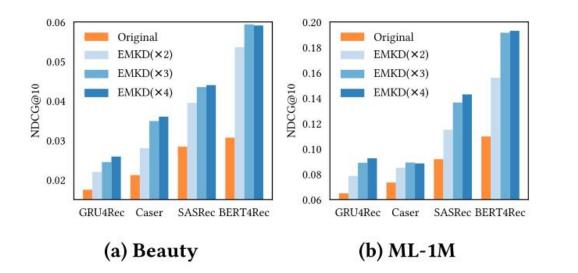


Figure 3: Performance (NDCG@10) comparison w.r.t different hyper-parameters on three datasets.



### Experiments



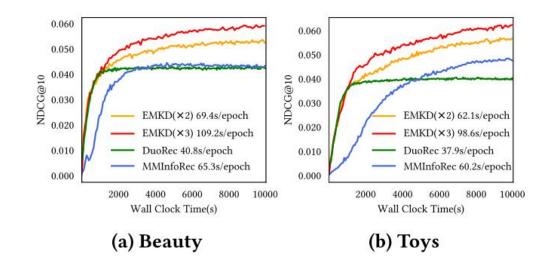


Figure 4: Performance comparison (NDCG@10) of different models enhanced by EMKD on Beauty and ML-1M datasets. We design three variants for each group of base sequence encoder with 2,3,4 parallel networks respectively.

Figure 5: Training efficiency (NDCG@10) on Beauty and Toys datasets. The training speed of EMKD is slightly lower than MMInfoRec, while the convergence speed of EMKD is comparable with DuoRec.





